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This paper presents an accurate approach to simulate the sonic boom of supersonic air-
crafts. The near-field flow is modeled by the conservative Euler equations and is solved
using a vertex-centered finite volume approach on adapted unstructured tetrahedral
meshes. A metric-based anisotropic mesh adaptation is considered to control the interpo-
lation error in Lp norm. Then, from the CFD solution, the pressure distribution under the
aircraft is extracted and used to set up the initial conditions of the propagation algorithm
in the far-field. The pressure distribution is propagated down to the ground in order to
obtain the sonic boom signature using a ray tracing algorithm based upon the Thomas
waveform parameter method. In this study, a sonic boom sensitivity analysis is carried
out on several aircraft designs (low-drag and low-boom shapes).

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Sonic boom, like every sound, corresponds to a small variation (positive for a compression or negative for an expansion) of
the ambient air pressure with respect to the atmospheric pressure. This acoustic phenomenon is associated with bodies
moving in atmosphere at a speed exceeding the local speed of sound. When an aircraft exceeds the speed of sound, shock
waves are generated at its surface and emanate outward, forming the Mach cone. Usually, these shock waves coalesce into
a characteristic N shape wave when they propagate in atmosphere toward the ground. The ‘‘boom–boom” heard on the
ground comes from the abrupt pressure increase in the ambient air, i.e., the two shock waves of the N shape acoustic signal.
The region exposed to the sonic boom horizontally extends on each side of the aircraft path on the ground on a band of 60 to
80 km width depending on the flight conditions, see Fig. 1. As a result, the sonic boom of supersonic aircrafts has a major
impact on the environment: annoyance for the population due to noise and startle, but also rattles and vibrations on build-
ings. At worst, the latter phenomenon can break windows and damage buildings. For this reason, the most of current na-
tional regulation does not allow any supersonic flight over land. For instance, Concorde, that flew from 1969 to 2003, was
allowed to fly supersonically only over water because its boom annoyed people on the ground.

Nonetheless, there is nowadays a substantial economic interest in designing a low sonic boom supersonic business jet
that respects this environmental constraint. Indeed, if we consider a flight above the US from New York to Los Angeles,
the travel time can be divided by two while flying at a supersonic cruise speed instead of a subsonic one. There is no con-
ventional shape to reduce the boom, this is the main problem. However, it has been stated [29] that a significant reduction in
shock overpressure levels is achieved by reducing the jet size, i.e., its weight. Consequently, focussing on business jets would
be the first step. Several companies all around the world are thus involved in several research programs in order to propose
low boom shape supersonic business jets (SSBJs).
. All rights reserved.
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Fig. 1. Illustration of the sonic boom horizontal carpet with under the aircraft path and the refraction of acoustic waves by atmosphere.
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In this context, numerical simulation faces a challenging problem. As constructing prototype is very (too) expensive,
numerical simulation, coupled with wind-tunnel testing, is currently the main way to design low boom aircraft shapes.
To this end, shape optimization methods, that are now mature, are employed. But, an optimization process will converge
toward the best low boom shape only if the sensitivity function is accurately evaluated. Therefore, numerical methods must
have the ability to assess the computed sonic boom for a given shape. It ensures that the direction of the gradient descent is
not due to numerical artifacts. High-fidelity numerical predictions of the sonic boom are thus of main interest in designing
low sonic boom aircraft configurations.
1.1. Modeling the sonic boom

The main difficulty in high-fidelity sonic boom numerical modeling lies in the large variations of the problem scales: they
vary from millimeter on the aircraft to kilometer in atmosphere. But nowadays, considering the ever-increasing computa-
tional power available, such high-fidelity predictions become conceivable. Indeed, fairly simple methods based on linear the-
ories were used in the past to predict sonic booms, such as [4]. Today, methods coupling CFD, that enable accurate non-linear
near-field solutions around aircrafts, with linear acoustics for propagation in atmosphere toward the ground are available
[27,30]. More precisely, the flow close to the aircraft, called aerodynamic near-field region, is computed by solving the con-
servative Euler equations for gas dynamic. Then, from the CFD solution, the pressure distribution under the aircraft is ex-
tracted and used to set up the initial conditions for the propagation algorithm in the far-field. The pressure distribution is
then propagated down to the ground to compute the sonic boom signature using linear acoustics.

The main problematic with these coupled methods is that some assumptions are required to ensure a valid coupling. As
stated in [30], there is a matching radius between the source function and the propagation extrapolation. The assumption is
that the use of the pressure signal becomes valid when the flow field does not contain crossflow components anymore. As
crossflow components are very significant at small radii but are less at larger distances, the pressure signal has to be ex-
tracted in the mid-field far enough from the aircraft to respect such a condition. This is a necessary condition to take all
the elements of the aircraft geometry (body, wings, engine, etc.) into account.
1.2. Present status

Standard CFD on unstructured meshes is only able to attain at most a one-aircraft-length distance below the jet which is
not enough to validate the coupling for complex geometries. After this distance, the solution is completely dissipated and the
signal is lost. Consequently, new three-stage methods have been developed. One method considers a coupling between CFD,
a multi-pole based near-field reconstruction to take into account crossflow components [13] and linear propagation [31].
Another approach couples near-field, mid-field and far-field simulations, see for instance [38]. However, these methods still
involve CFD computations that have to be accurate to provide correct sonic boom predictions. Indeed, these CFD computa-
tions generally employ isotropic unstructured meshes (to be able to handle complex aircraft geometries) leading to a lot of
numerical dissipation while propagating the shock waves. Thus, certified CFD computation seems to be a necessity.

Besides, in the last decade, 3D meshing dedicated to CFD has tremendously progressed with notably the advent of aniso-
tropic mesh adaptation. This technique has already proved its efficiency to reduce drastically the required number of degrees
of freedom to achieve a given complexity [6,11,15,23,28,36]. Furthermore, anisotropic mesh adaptation particularly reduces
the numerical dissipation of shock capturing schemes and recovers the numerical scheme convergence order that is
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generally lost for flows with genuine discontinuities [26]. In this paper, we propose an alternative two-stage approach based
on adaptive CFD.
1.3. The proposed approach

A high-fidelity method to accurately predict the sonic boom emitted by supersonic aircrafts is discussed. This approach is
fully automatic and thus immediately applicable whatever the aircraft geometry and whatever the flight conditions. It aims
at:

� Controlling the impact of the numerical dissipation of flow solvers on unstructured meshes. The intensity of shocks is pre-
served while they propagate through the domain, along with the non-linearities of the solution.

� Computing accurate CFD mid-field signature, i.e., the pressure signature at a distance of the order of the kilometer from
the aircraft. In particular, shock waves are kept separated in the mid-field and do not merge artificially due to any coarse
mesh effect.

In our high-fidelity model, the resolution is two stepped, see Fig. 2. Near-field and mid-field flows are solved using a ver-
tex-centered finite volume approach on anisotropic adapted unstructured tetrahedral meshes. Adapted anisotropic meshes
are utilized to break scale factors, leading to accurate near-field and mid-field predictions [11,26]. The pressure distribution
is then propagated down to the ground to compute the sonic boom signature using a ray tracing algorithm based upon the
Thomas waveform parameter method [37].

As regards CPU time, this strategy can lead to fast answers or to large CFD computations depending on the study criteria.
For calculations of mid-field pressure signals at small distances (100 m) without convergence analysis, computations are
achieved in a couple of hours on eight 2.8 GHz Intel processors. On the opposite, for large distance mid-field pressure signal
computations (the order of the kilometer) with convergence analysis in order to assess sonic boom prediction, simulations
necessitate dozens of millions of degrees of freedom for the last adapted mesh, which results in one week simulations on
eight processors.

In the present work, attention is paid to the coupling between mid-field resolution and far-field propagation. To resolve
this issue, a convergence study of sonic boom signatures with respect to extraction distances for the whole adaptive process
is carried out.

In addition to the validity of the coupling, we aim at assessing the obtained numerical results as much as possible. We
would like to attest that the computed mid-field signature and the sonic boom signal converge toward the physical solution.
In this paper, we show that anisotropic mesh adaptation helps to answer this question. Indeed, in order to be able to certify a
result, the mesh convergence order of the numerical solution must be equal to the theoretical order of the numerical scheme.
However, global second order of mesh convergence is generally scarcely reached for most practical applications in which
genuine discontinuities or sharp gradients are involved – and it is the case for the sonic boom problem. It has been demon-
strated in [26] that anisotropic mesh adaptation enables to recover the theoretical convergence order. In broad outline, the
NEAR-FIELD REGION

MID-FIELD REGIONPROPAGATION

GROUND

FAR-FIELD REGION

Fig. 2. Sonic boom problem modeling.
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mesh adaptation strategy automatically asks the mesh generator to set the adequate number of required vertices in all re-
gions to attain the theoretical convergence order.

1.4. Overview

Section 2 details the CFD modeling. Section 2.1 describes the vertex-centered finite volume scheme used to compute
near-field and mid-field regions flows and Section 2.2 recalls the mesh adaptation algorithm. We briefly review the main
stages of the adaptation procedure. The CFD part is validated in Section 2.3 by comparison to experimental data. Then in
Section 3, the ray tracing algorithm based upon the Thomas waveform parameter method is recalled and the coupling be-
tween the CFD and the propagation code is clarified. Finally, in Section 4, several aircraft shapes, provided by Dassault Avi-
ation in the HISAC European project, are analyzed and compared. We eventually point out the impact of anisotropic mesh
adaptation to compute accurate mid-field signatures with CFD.

2. CFD modeling

The near-field flow around the aircraft is modeled by the conservative Euler equations. Assuming that the gas is perfect,
inviscid and that there is no thermal diffusion, the Euler equations for mass, momentum and energy conservation read:
Fig. 3.
edge Pi

Kij and
@q
@t þr � ðqUÞ ¼ 0;
@ðqUÞ
@t þr � ðqU� UÞ þ rp ¼ 0;

@ðqEÞ
@t þr � ððqEþ pÞUÞ ¼ 0;

8>><>>:

where q denotes the density, U the velocity vector, E ¼ T þ kUk

2

2 the total energy and p ¼ ðc� 1ÞqT the pressure with c ¼ 1:4
the ratio of specific heats and T the temperature. These equations can be rewritten:
@W
@t
þr � FðWÞ ¼ 0; ð1Þ
where W ¼ tðq;qU;qEÞ is the conservative variables vector and the matrix F represents the convective operator.
The Euler system is solved with a finite volume technique on unstructured tetrahedral meshes using Wolf, a in-house

flow solver. The resolution is performed on highly anisotropic adapted meshes to enhance drastically the simulation accu-
racy. This is a (the only) way to propagate Mach cone emitted by the aircraft several kilometers below in the mid-field. The
flow solver and the mesh adaptation methods are presented in the following sections. A last section validates the approach
on two test cases experimented at NASA [5,19].

2.1. Flow solver

The proposed method is a vertex-centred finite volume scheme applied to tetrahedral unstructured meshes which uses a
particular edge-based formulation with upwind elements introduced in [9]. This flow solver employs the HLLC or the Roe
approximate Riemann solver to compute numerical fluxes. High-order scheme is derived according to a MUSCL (Monotone
Upwind Schemes for Conservation Laws) type method using downstream and upstream tetrahedra. This approach is com-
patible with vertex-centered and edge-based formulations. Consequently, an inexpensive high-order extension of monotone
upwind schemes is easily derived. The flux integration based on the edges and their corresponding upwind elements
Left, illustration of finite volume cells construction in 2D with two neighboring cells Ci and Cj , and the upwind triangles Kij and Kji associated with
Pj. The common boundary @Cij with the representation of the solution extrapolated values for the MUSCL type approach is shown. Right, downstream
upstream Kji tetrahedra associated with edge PiPj .
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(crossed by the edge) is a key-feature in order to preserve the positivity of the density for vertex-centered formulation. The
MUSCL type method is combined with a generalization of the Superbee limiter with three entries to guarantee the TVD (Total
Variation Diminishing) property of the scheme. An explicit time stepping algorithm is used by means of a strong–stability–
preserving (SSP) Runge–Kutta scheme.

2.1.1. Scheme for convective fluxes
The vertex-centered finite volume formulation consists in associating with each vertex Pi of the mesh a control volume or

finite volume cell, denoted Ci. The dual finite volume cell mesh is built by the rule of medians. The common boundary
@Cij ¼ @Ci \ @Cj between two neighboring cells Ci and Cj is decomposed in several triangular interface facets. An illustration
of this construction in two dimensions is shown in Fig. 3.

Hence applying the finite volume method to the Euler equations, we get for each finite volume cell Ci:
jCij
dWi

dt
þ
Z
@Ci

FðWiÞ � ni dc ¼ 0; ð2Þ
where Wi is the mean value of the solution W on the cell Ci and ni is the outer normal to the cell Ci. The integration of the
convective fluxes F is done by decomposing the cell boundary in facets @Cij:
Z

@Ci

FðWiÞ � ni dc ¼
X

Pj2VðPiÞ
FjIij
�
Z
@Cij

ni dc;
where VðPiÞ is the set of all neighboring vertices of Pi and FjIij
represents the constant value of FðWÞ at the interface @Cij.

The flow is calculated with a numerical flux function, denoted Uij:
Uij ¼ UijðWi;Wj;nijÞ ¼ FjIij
�
Z
@Cij

ni dc; ð3Þ
where nij ¼
R
@Cij

ni dc. The numerical flux function approximates the hyperbolic terms on the common boundary @Cij. We no-
tice that the computation of the convective fluxes is performed mono-dimensionaly in the direction normal to the boundary
of the finite volume cell. Therefore, the numerical calculation of the flux function Uij at the interface @Cij is achieved by the
resolution of a one-dimensional Riemann problem in the direction of the normal nij by means of an approximate Riemann
solver.

Several upwind numerical flux functions are available and can be formally written:
UijðWi;Wj;nijÞ ¼
FðWiÞ þ FðWjÞ

2
� nij þ dðWi;Wj;nijÞ; ð4Þ
where the function dðWi;Wj;nijÞ contains the upwind terms and depends on the chosen scheme. In this paper, we compare
the Roe and the HLLC approximate Riemann solver that we summarize below. More details on Roe and HLLC solvers are
found in [32,3], respectively.

2.1.1.1. Roe approximate Riemann solver. In the Roe approach, the upwinding term d is defined by the Jacobian matrix of F:
AðWÞ ¼ @ðFðWÞ � nijÞ
@W

:

The eigenvalues of AðWÞ are real and given by u;uþ c and u� c. In the context of the Euler equations, the hyperbolic flux is
homogeneous of order one leading to the property:
FðWÞ � nij ¼ AðWÞW;
that enables non-oscillatory conservative schemes to be built. The flux resolution uses the formulation of U introduced by
Roe:
URoeðWi;Wj;nijÞ ¼
FðWiÞ þ FðWjÞ

2
� nij þ jeAðWi;WjÞj

Wi �Wj

2
;

where eA is the Jacobian of F evaluated for the Roe average variables and for a diagonalizable matrix A ¼ PKP�1 we have de-
noted jAj ¼ PjKjP�1. Let Wl and Wr be the two states, then the Roe averages are given by:
~q ¼ ffiffiffiffiffiffiffiffiffiffi
qlqr
p

; eU ¼ ffiffiffiffiffiql
p

Ul þ
ffiffiffiffiffiqr
p

Urffiffiffiffiffiql
p þ ffiffiffiffiffiqr

p and eH ¼ ffiffiffiffiffiql
p

Hl þ
ffiffiffiffiffiqr
p

Hrffiffiffiffiffiql
p þ ffiffiffiffiffiqr

p

from which we get Roe average sound speed: ~c2 ¼ ðc� 1Þ eH � 1
2

~q2
� �

where ~q2 ¼ keUk2.

2.1.1.2. HLLC approximate Riemann solver. The idea of the HLLC solver is to consider locally a simplified Riemann problem
with two intermediate states depending on the local left and right states. The simplified solution to the Riemann problem
consists of a contact wave with a velocity SM and of two acoustic waves, which may be either shocks or expansion fans.
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The acoustic waves have the smallest and the largest velocities (SL and SR, respectively) of all the waves present in the exact
solution. If SL > 0 then the flow is supersonic from left to right and the upwind flux is simply defined from FðWlÞwhere Wl is
the state on the left of the discontinuity. Similarly, if SR < 0 then the flow is supersonic from right to left and the flux is deter-
mined by FðWrÞ where Wr is the state on the right of the discontinuity. In the more difficult subsonic case when SL < 0 < SR

we have to calculate FðW�
l Þ or FðW�

r Þ. Consequently, the HLLC flux is given by:
UHLLC ¼

Fl if SL > 0;
F�l if SL 6 0 < SM;

F�r if SM 6 0 6 SR;

Fr if SR < 0:

8>>><>>>:

Now, let us specify how W�

l and W�
r are evaluated. We denote by g ¼ U:n. In [3], the following evaluation is proposed:
F�l ¼ Fl þ SLðW�
l �WlÞ;

F�r ¼ Fr þ SRðW�
r �WrÞ;
from which the W�
l and W�

r are computed. Assuming that g� ¼ g�l ¼ g�r ¼ SM , we obtain (the subscript l or r are omitted for
clarity)
W� ¼ 1
S� SM

qðS� gÞ
qUðS� gÞ þ ðp� � pÞn
qEðS� gÞ þ p�SM � pg

0B@
1CA ¼ 1

S� g�

qðS� gÞ
qUðS� gÞ þ ðp� � pÞn
qEðS� gÞ þ p�g� � pg

0B@
1CA;
where
p� ¼ qðS� gÞðSM � gÞ þ p:
The key of this solver lies in the definition of the three waves velocity. For the contact wave, the following velocity is
considered:
SM ¼
qrgrðSR � grÞ � qlglðSL � glÞ þ pl � pr

qrðSR � grÞ � qlðSL � glÞ
;

and the other acoustic wave speeds are based on the Roe averages:
SL ¼minðgl � cl; ~g� ~cÞ and SR ¼ maxðgr þ cr ; ~gþ ~cÞ:
With such waves velocities, the HLLC approximate Riemlann solver has the following properties. It automatically: (i) satisfies
the entropy inequality, (ii) resolves isolated contacts exactly, (iii) resolves isolated shocks exactly and (iv) preserves
positivity.

Such a formulation gives at best only a first-order scheme, higher-order extensions are possible with a MUSCL type
technique.

2.1.2. High-order accurate version
The MUSCL type reconstruction method has been designed to increase the order of accuracy of the scheme. This method

was introduced by Van Leer in a series of papers, see for instance [22]. The idea is to use extrapolated values Wij and Wji of W
at the interface @Cij to evaluate the flux, cf. Fig. 3 left. The following approximation is performed:
Uij ¼ UijðWij;Wji;nijÞ;
with Wij and Wji which are linearly interpolated as:
Wij ¼Wi þ 1
2 ðrWÞij � PiPj

!
;

Wji ¼Wj þ 1
2 ðrWÞji � PjPi

!
;

8<: ð5Þ
where, in contrast to the original MUSCL approach, the approximate ‘‘slopes” ðrWÞij and ðrWÞji are defined for any edge and
obtained using a combination of centered, upwind and nodal gradients.

The centered gradient, which is related to edge PiPj, is defined as:
ðrWÞCij � PiPj
��! ¼Wj �Wi:
Upwind and downwind gradients, which are also related to edge PiPj, are computed according to the definition of upstream
and downstream tetrahedra of edge PiPj. These tetrahedra are respectively denoted Kij and Kji, cf. Fig. 3 right. Kij (resp. Kji) is
the unique tetrahedron of the ball of Pi (resp. Pj) the opposite face of which is crossed by the line defined by the edge PiPj.

Upwind and downwind gradients are then defined for vertices Pi and Pj as:
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ðrWÞUij ¼ ðrWÞjKij
and ðrWÞDij ¼ ðrWÞjKji

:

where ðrWÞjK ¼
P

P2K WPr/PjK is the P1-Galerkin gradient on tetrahedron K. Parametrized nodal gradients are built by
introducing the b-scheme:
ðrWÞij ¼ ð1� bÞðrWÞCij þ b ðrWÞUij ;
ðrWÞji ¼ ð1� bÞðrWÞCij þ b ðrWÞDij ;
where b 2 ½0;1� is a parameter controlling the amount of upwinding. For instance, the scheme is centered for b ¼ 0 and fully
upwind for b ¼ 1.

2.1.2.1. Numerical dissipation of fourth-order: V4-scheme. The most accurate b-scheme is obtained for b ¼ 1=3. Indeed, it can
be demonstrated that this scheme is third-order for the two-dimensional linear advection on structured triangular meshes.
In our case, for the non-linear Euler equations on unstructured meshes, a second-order scheme with a fourth-order numer-
ical dissipation is obtained. These high-order gradients are given by:
ðrWÞV4
ij ¼

2
3
ðrWÞCij þ

1
3
ðrWÞUij ;

ðrWÞV4
ji ¼

2
3
ðrWÞCji þ

1
3
ðrWÞDij :
2.1.2.2. Numerical dissipation of sixth-order: V6-scheme. An even less dissipative scheme has been proposed in [9]. It is a more
complex linear combination of gradients using centered, upwind and nodal P1-Galerkin gradients. The nodal P1-Galerkin gra-
dient of Pi is related to cell Ci and is computed by averaging the gradients of all the tetrahedra containing vertex Pi:
ðrWÞPi
¼ 1

4 jCij
X
K2Ci

jKjðrWÞjK :
A sixth-order dissipation scheme is then obtained by considering the following high-order gradient:
ðrWÞV6
ij ¼ ðrWÞV4

ij �
1

30
ðrWÞUij � 2ðrWÞCij þ ðrWÞDij
� �

� 2
15
ðrWÞMi

� 2ðrWÞPi
þ ðrWÞPj

� �
;

ðrWÞV6
ji ¼ ðrWÞV4

ji �
1

30
ðrWÞDij � 2ðrWÞCij þ ðrWÞUij
� �

� 2
15
ððrWÞMj

� 2ðrWÞPj
þ ðrWÞPi

Þ;
where ðrWÞMi;j
is the gradient at the points Mi;j intersection of the line defined by PiPj and upwind–downwind tetrahedra,

see Fig. 3 right. These gradients are computed by linear interpolation of the vertices attached nodal gradients of face contain-
ing Mi;j.

2.1.2.3. Dervieux limiter. The previous MUSCL schemes are not monotone. Therefore, limiting functions must be coupled with
the previous high-order gradient evaluations to guarantee the TVD property of the scheme. The gradient of Relation (5) is
substituted by a limited gradient denoted ðrWÞlimij . Here, we consider the three-entries limiter introduced by Dervieux which
is a generalization of the Superbee limiter [8]:
if uv 6 0 then
Limðu;v ;wÞ ¼ 0

else
Limðu;v ;wÞ ¼ SignðuÞminð2 juj;2 jv j; jwjÞ;
and we use: Lim ðrWÞCij ; ðrWÞDij ; ðrWÞHO
ij

� �
where ðrWÞHO

ij is even ðrWÞV4
ij or ðrWÞV6

ij .

2.1.3. Boundary conditions
For aircraft supersonic flow simulations, three boundary conditions are required. Slip boundary conditions are imposed

for the body as the flow is considered inviscid. We used Steger–Warming flux [35] to set up free-stream (external flow) con-
ditions. And finally, for geometries with engines, the inlet and the exhaust are modeled with a modified Steger–Warming
flux.

2.1.3.1. Slip condition. For this boundary condition we impose weakly
U � n ¼ 0: ð6Þ
To this end, we compute the flux U between the state on the boundary W and a mirror state W:
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W ¼
q
qU
qE

0B@
1CA and W ¼

q
qU� 2qðU � nÞn

qE

0B@
1CA:
If Condition (6) is verified then W ¼W and thus UðW;WÞ ¼ FðWÞ. Moreover, as W verifies Relation (6), FðWÞ simplifies to:
USlip ¼ FðWÞ ¼ ð0;pn;0Þt :
Therefore, if the desired condition is satisfied, then the boundary flux reduced to its well known commonly used form.
Nevertheless, the state W on the boundary does not satisfy this condition unless it is imposed strongly which is not pos-

sible as we will no more conserve the mass. This problem is solved by computing the flux between the state and its mirror
state. This flux depends on the considered flux. Let us presents the Roe and the HLLC versions.

2.1.3.2. Roe flux. By definition, we have c ¼ �c; p ¼ �p and H ¼ H. Notably, we get U � n ¼ �U � n. In this particular case, the Roe
averages simplify to
~q ¼ q; eU ¼ U� ðU � nÞn ¼ Ut and eH ¼ H;
where Ut is the velocity in the tangent plane. We deduce:
eU � n ¼ 0; ~q2 ¼ kUtk2 ¼ q2 � ðU � nÞ2 and ~c2 ¼ ðc� 1Þ H � 1
2

~q2
� �

:

Notice that the Roe averages verify the slipping condition: eU � n ¼ 0. Computing analytically the Roe flux leads to:
USlip ¼ URoeðW;W;nÞ ¼ ð0; ðpþ q~cðU � nÞ þ qðU � nÞ2Þn;0Þt :
This flux can be written shortly: URoeðW;W;nÞ ¼ ð0; pHn;0Þt .

2.1.3.3. HLLC flux. To compute UHLLC we still have to evaluate the Roe averages to define the waves speed. The left and right
waves speed are then given by
SL ¼minðU � n� c;�~cÞ and SR ¼maxð�U � nþ c; ~cÞ:
Therefore, we always have SL < 0 and SR > 0, as ~c > 0. The flux is then given by one of the intermediate state W�. But in this
case, it simplifies again:
S� ¼ 0 ¼ U� � n;
as SL þ SR ¼ 0 meaning that the intermediate state verifies the slipping condition. Finally, we get:
USlip ¼ UHLLCðW;W;nÞ ¼ FðW�Þ ¼ ð0;p�n; 0Þt ;
with p� ¼ pþ qU � nðU � n� SLÞ ¼ pþ qU � n minðc; ~c þ U � nÞ.
Let us give two remarks about the proposed slip condition. If the wave speed is defined by the Roe averages in the HLLC

flux then we have p� ¼ pH and thus UHLLC ¼ URoe which is consistent. Moreover, if Condition (6) is verified, we get p ¼ pH ¼ p�

and the computed flux become the usual one. The added term to the pressure acts as a correction term to take into account
the violation of Condition (6) by the current state.

2.1.3.4. Free-stream condition. This condition imposes a free-stream uniform flow from the infinite. It applies when we have a
boundary C1 for which the infinite constant state W1 is known. We assume that the infinite state is uniform:
W1 ¼
q1
ðqUÞ1
ðqEÞ1

0B@
1CA:
This state enables upwind fluxes at the infinite to be computed. The considered boundary fluxes are built from a decompo-
sition following the characteristics values. We consider the Steger–Warming flux [35] which is completely upwind on the
solution Wi:
U1 ¼ AþðWi;niÞWi þ A�ðWi;niÞW1;
where Aþ ¼ jAjþA
2 and A� ¼ jAj�A

2 .

2.1.3.5. Engine condition. Engines boundary conditions are defined by a given number of variables representing the engine
data. All variables are linked by the isentropic relations that in particular connects the static state to the total state. These
data are used to define the jet state W jet. To set up the engine data, the flow solver requires:
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� Three data for the inlet: Min; pin
s and T in

t .
� Three data for the exhaust: Mout; pout

t and Tout
t .

where subscript s and t denote the static and the total variables, respectively. Moreover, the direction of the flow is consid-
ered normal to the inlet or exhaust face: U ¼ kUkn. The flux is computed using a modified Steger and Warming boundary
condition for inlet and exhaust:
Ujet ¼ AþðW jet;niÞWi þ A�ðW jet;niÞW jet;
where W jet and Wi are the engine constant state and the local vertex state, respectively.
2.1.4. Time advancing
An explicit scheme is used to advance the Euler equations in time by a line method, i.e., time and space are treated sep-

arately. Once the equations have been discretized in space, a set of ordinary differential equations in time is obtained:
Wt � LðWÞ ¼ 0. To discretize the previous relation, a high-order multi-step Runge–Kutta scheme is considered. Such time
discretization methods, called SSP (strong–stability–preserving), have non-linear stability properties which are particularly
suitable for the integration of system of hyperbolic conservation laws where discontinuities appear. These schemes verify
the TVD property.

The optimal 2-stage order-2 SSP Runge–Kutta scheme introduced by Shu and Osher [33] is the following modified Euler
scheme:
W ð1Þ ¼Wn þ DtLðWnÞ;

Wnþ1 ¼ 1
2

Wn þ 1
2

W ð1Þ þ 1
2

DtLðW ð1ÞÞ;
which accept to use a CFL coefficient up to 1. In this study, we consider a 5-stage order-2 SSPRK scheme given in [34] that
enables us to consider CFL coefficient up to 4. This scheme reads:
W ð1Þ ¼Wn þ 1
4

DtLðWnÞ;

W ðkÞ ¼W ðk�1Þ þ 1
4

DtLðW ðk�1ÞÞ; k ¼ 2; . . . ;4;

Wnþ1 ¼ 1
5

Wn þ 4
5

W ð4Þ þ 1
5

DtLðW ð4ÞÞ:
2.1.4.1. Computing the time step. The maximal allowable time step for the numerical scheme obtained on the linearized mod-
el is:
DtðPiÞ ¼
hðPiÞ

ci þ kUik
;

where hðPiÞ is the smallest altitude in the ball of vertex Pi. The global time step is then given by Dt ¼ CFLminPi
ðDtðPiÞÞ. How-

ever, in the context of steady simulation, local time step are used to obtain considerable gain in CPU time. Each vertex ad-
vances in time at its own speed defined by its own CFL condition.
2.2. Multi-scales anisotropic mesh adaptation

Mesh adaptation provides a way to control the accuracy of the numerical solution by modifying the domain discretization
according to size and directional constraints. When dealing with real life flow problems, Hessian-based unstructured mesh
adaptation has already proved its efficiency to improve the ratio between the solution accuracy and the number of degrees of
freedom (the problem complexity) [6,11,15,23,28,36]. In addition, as a large number of physical phenomena are anisotropic
by nature, anisotropic mesh adaptation improves even more this ratio. In the context of flow with shocks, anisotropic mesh
adaptation provides very accurate solutions by reducing considerably the numerical dissipation of shock capturing schemes.

If previous features of unstructured mesh adaptation are now quite classical, it has been recently pointed out that mesh
adaptation has further consequences impacting directly numerical schemes used to approximate the flow. Indeed, a loss of
convergence order generally occurs due to the presence of steep gradients (Naviers Stokes equations) or genuine disconti-
nuities (Euler equations) in the flow, even if a probably spatially high order method is employed. The computed mesh con-
vergence order on uniformly refined meshes is not the theoretical expected one. In [26], it has been demonstrated that the
convergence order of numerical schemes can be recovered thanks to this mesh adaptation procedure. Next sections summa-
rize the considered anisotropic mesh adaptation method.
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2.2.1. Anisotropic mesh generation
The generation of anisotropic adapted meshes uses the notion of length in a metric space [12]. The idea is to introduce a

metric tensor in the dot product definition to modify size evaluation in all directions. In 3D, a metric is a 3� 3 symmetric
definite positive matrix. The mesh is automatically adapted by generating a unit mesh with respect to this metric, i.e., the
mesh is such that all edges have a length close to one in the metric and such that all elements are almost regular. The mesh
is then uniform in prescribed metric space and, non-uniform and anisotropic in the Euclidean space.

In the context of numerical simulation, the accuracy level of the solution depends on the current mesh used for its com-
putation and the mesh adaptation prescription, i.e., the metric field, is provided by the current solution. This points out the
non-linearity of the anisotropic mesh adaptation problem. Therefore, an iterative process needs to be set up in order to con-
verge both the mesh and the solution, or equivalently the metric field and the solution.

2.2.1.1. Mesh adaptation scheme. For stationary simulations, an adaptive computation is carried out via a mesh adaptation
loop inside which an algorithmic convergence of the pair mesh-solution is sought. In other words, the goal is to converge to-
wards the stationary solution of the problem and similarly towards the corresponding invariant adapted mesh. At each stage,
a numerical solution is computed on the current mesh with the flow solver. This solution is analyzed with an error estimate
presented in the following section. This error estimate is based on the control of the interpolation error in Lp norm. It provides
a metric field. This anisotropic metric is a function of the Hessian of the solution which is reconstructed from the numerical
solution. Next, an adapted mesh, i.e., a unit mesh, is generated with respect to this metric. Mesh generators use all the meshing
operations to adapt the mesh and a vertex insertion procedure based on an anisotropic generalization of Delaunay technique
[10,14]. In this paper, the unstructured adaptive local remesher Mmg3d has been used [10]. Finally, the solution is linearly
interpolated on the new mesh. This procedure is repeated until convergence of the pair mesh-solution is reached.

2.2.2. Continuous mesh model and optimality
If u denotes a smooth given function, the problem of deriving a mesh that minimizes the Lp norm of the interpolation

error is an active field of research [6,8,11,18]. Our approach is based on a promising continuous mesh model that allows
to predict effectively the interpolation error on a fictitious so called continuous mesh [25]. In addition to this interpolation
estimate, the main benefit is that we are practically able to generate a computational optimal discrete mesh.

Let X be a bounded domain of R3. A continuous mesh M of domain X is a Riemannian metrics space M ¼ ðMðxÞÞx2X that
prescribes at each point x a density, anisotropic directions and stretching along these directions all given by the metric ten-
sorMðxÞ. A discrete mesh H that verifies the anisotropic size prescription of M is called a unit mesh. It is composed of unit-
length edges e and unit-volume elements K computed in M:
8e ¼ pq 2 H; kekM ¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
teMðpþ tpqÞe

p
dt 	 1;

8K 2 H; jKjM ¼
Z

K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMðxÞÞ

q
dx 	

ffiffiffi
2
p

12
:

We recall then a first result that follows up from these definitions: if H is a unit mesh with respect to M and u is a smooth
function, then the following estimate of the linear interpolation error u�PHu holds:
ku�PHukLpðXhÞ 6

Z
X

trace M�1
2ðxÞjHuðxÞjM�1

2ðxÞ
� �� �p

dx
� �1

p

; ð7Þ
where Hu is the hessian of u and jHuj the matrix deduced from Hu by taking the absolute value of its eigenvalues. The pre-
vious inequality turns out to be an equality for some p and some smoothness hypotheses on u. The right-hand side of (7) can
be then minimized analytically [2,24], the unique optimal 3D continuous mesh MLp ¼ ðMLp ðxÞÞx2X minimizing (7) is:
MLp ¼ DLp ðdet jHujÞ
�1

2pþ3jHuj with DLp ¼ N
2
3

Z
X
ðdet jHujÞ

p
2pþ3

� ��2
3

; ð8Þ
where N is a parameter that fixed the accuracy (size) of the mesh. This parameter is called complexity and is given by:
N ¼ CðMÞ ¼
Z

X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMðxÞÞ

q
dx:
DLp is a global normalization term set to obtain a continuous mesh with a complexity N and ðdet jHujÞ
�1

2pþ3 is a local normal-
ization term accounting for the sensitivity of the Lp norm. Indeed, the choice of a Lp norm is essential in a mesh adaptation
process regarding the type of problems solved. For instance in CFD, physical phenomena can involve large scale variations.
Capturing weak phenomena is crucial for obtaining an accurate solution by taking into account all phenomena interactions
in the main flow area. Intrinsically, metrics constructed with lower p norms are more sensitive to weaker variations of the
solution whereas the L1 norm mainly concentrates on strong singularities (e.g. shocks).

Finally, the interpolation error (7) can be rewritten for MLp , the following bound follows up for a unit mesh HLp with re-
spect to MLp :
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ku�PHLp ukLpðXhÞ 6 3N�
2
3

Z
X
ðdet jHujÞ

p
2pþ3

� �2pþ3
3p

6
Cst

N2=3 : ð9Þ
A main result arises from the previous bound: a global second-order asymptotic mesh convergence is expected for the con-
sidered variable u. Indeed, a simple analogy with regular grids leads to consider that N ¼ Oðh�3Þ so that the previous estimate
becomes: ku�PHLp ukLpðXhÞ 6 Cst0h2. The second order convergence property still holds even when singularities are present in
the flow field for all p 2 ½1;1½, see [26]. This theoretical result is verified numerically in our simulations and is used to assess
the obtained numerical solutions
2.2.3. About mesh anisotropy
In three dimensions, mesh anisotropy can be quantified by two notions: the anisotropic ratios and the anisotropic quo-

tients. We first recall both notions and how they are evaluated. Deriving these quantities for an element relies on the fact
that there always exists a unique metric tensor for which this element is unit. If MK denotes the metric tensor associated
with element K, solving the following linear system provides MK :
ðSÞ

‘2
MK
ðe1Þ ¼ 1

..

.

‘2
MK
ðe6Þ ¼ 1;

8>>><>>>:

where ðeiÞi¼1;6 is the edges list of K and ‘2

MK
ðeiÞ ¼ teiMK ei. ðSÞ admits a unique solution as soon as the volume of K is not null.

Once MK is computed, the anisotropic ratio and the anisotropic quotient associated with element K are simply given by
ratio ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

i
ki

max
i

ki

vuuut ¼
max

i
hi

min
i

hi
; and quo ¼

max
i

h3
i

h1h2h3
;

where ðkiÞi¼1;3 are the eigenvalues ofMK and ðhiÞi¼1;3 are the corresponding sizes. The anisotropic ratio stands for the max-
imum elongation of a tetrahedron by comparing two principal directions. The anisotropic quotient represents the overall
anisotropic ratio of a tetrahedron taking into account all the possible directions. It corresponds to the overall gain in three
dimensions of an anisotropic adapted mesh as compared to an isotropic adapted mesh. The gain is of course even much greater
when compared to a uniform mesh.
2.2.4. Application to numerical computation
In our case, the numerical solution provides a continuous piecewise linear by elements representation of the solution.

Consequently, our analysis cannot be applied directly to the numerical solution. The idea is to build a higher order solution
approximation u� of u from uh which is twice continuously differentiable and to consider u� in our error estimate. More pre-
cisely, the interpolation error is approximated as ku�PhukX 	 ku� �Phu�kX. If u� and uh coincide at mesh vertices then we
have ku� �Phu�kX ¼ ku� � uhkX illustrating that our estimate approximate the approximation error. Practically, only the
Hessian of u� is recovered. Two recovery (reconstruction) of the Hessian of u� from uh, that are compared in this paper,
are presented below.

In the context of discontinuous flows, the numerical solution is also piecewise linear by elements even if it approximates
a discontinuous solution. The mesh acts as a regularization operator on the solution. In this case, we still approximate the
solution u with a continuous higher order representation and we still apply our error estimate. Notice that, even if the
numerical solution approximates discontinuous fields, it is continuous due to the numerical dissipation of the numerical
scheme.

Let us introduce some notations used in the Hessian recovery methods. Let H be a mesh of a domain Xh 
 R3. We denote
by ui 2 Vh the basis function associated with vertex Pi, where Vh is the approximation space associated with the P1 Lagrange
finite element. We denote by Si the stencil ui, i.e., Si ¼ suppui, which is in fact the ball of Pi.
2.2.4.1. A double L2-projection. The local L2-projection operator is based on the Clément interpolation operator [7]. The idea is
to find, in a L2-norm sense, the best constant gradient on Si approximating the piecewise constant field by element ruh. For
each vertex Pi, we obtain the following gradient reconstruction:
rRuhðPiÞ ¼
P

K2Si
jKjrðuh jKÞ
jSij

;

where jKj and jSij denote the volume of element K and stencil Si, respectively. In fact, this procedure is equivalent to a recon-
struction by means of a volume-weighted averaging.

The recovery procedure provides us with gradient nodal values and thus we get a piecewise linear by elements represen-
tation of the gradient. The same recovery procedure is applied to each component of the gradient to recover the Hessian of u�.
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2.2.4.2. A Green formulation. The Hessian of the solution is recovered using a weak formulation, based on the Green formula,
considering that the gradient of uh is constant by element. We consider the same notations as previously. For each vertex Pk

of H, we have for 1 6 i; j 6 3:
Z
H

@2uh

@xi@xj
uk ¼

Z
Sk

@2uh

@xi@xj
uk ¼ �

Z
Sk

@uh

@xj

@uk

@xi
þ
Z
@Sk

@uh

@n
uk dr ¼ �

X
K2Sk

Z
K

@uh

@xj

@uk

@xi
;

as the shape function is zero on the boundary of the stencil @Sk. A specific treatment is done close to the boundary. Each
component of the Hessian is then recovered with the relation:
@2u�

@xi@xj
ðPkÞ :¼

�
R

Sk

@uh
@xj

@uk
@xiR

Sk
uk

¼ �

P
K2Sk

@uh
@xj

� �
jK

R
K
@uk
@xi

jSk j
4

:

2.3. Adaptive CFD validation by comparison to experimental data

The flow solver Wolf coupled with the multi-scales anisotropic mesh adaptation method is validated by comparing on an
analytical geometries the numerical results, i.e., mid-field pressure signatures, to experimental data obtained in wind-tun-
nels by the NASA in experimental studies [5,19]. Two geometries are considered: a simple axisymmetric body and a lifting
wing-body. The axisymmetric body is chosen to illustrate the efficiency of the proposed adaptive approach and, to compare
and select the resolution parameters. The wing-body configuration validates the methodology on a lifting configuration. The
effectiveness in terms of CPU time is also shown.

2.3.1. Axisymmetric body
As in Refs. [21,39], Model 8 of Ref. [5] was selected to validate the proposed approach. This axisymmetric model repre-

sents two tandem cones connected by a cylinder defined analytically in inches by:
r ¼ x

ffiffiffiffiffiffiffiffiffiffi
0:08
p

r
if 0 6 x 6 0:25l

r ¼
ffiffiffiffiffiffiffiffiffiffi
0:02
p

r
if 0:25l 6 x 6 0:75l

r ¼ 2
2þ

ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffi
0:04
p

r
x� 2�

ffiffiffi
2
p

2

 !
if 0:75l 6 x 6 l;
with a reference length l ¼ 2 inches (5.08 cm). The initial geometry has been elongated by adding a cylinder of length 2l to
represent the sting support of the wind-tunnel. This geometry is illustrated in Fig. 4. The geometry is immersed in a cylin-
drical domain aligned with the x-axis. The cylinder has a length of 6 m (236 inches) and a radius of 2.5 m (98 inches). The
computation is deliberately fully three-dimensional and do not use any axisymmetric reduction to reduce computational
cost. Indeed, the aim is to validate the 3D platform which will be used for complete aircraft configurations that are obviously
not axisymmetric. The flow conditions are Mach 1.41 at 0� angle of attack.

While validating the adaptive simulation platform on this test case, the following parameters of the platform are
compared:

� HLLC and Roe approximate Riemann solver.
� V4-scheme and V6-scheme.
� L2-projection and Green Hessian recovery method.

All ran cases are summarized in Table 1.
Fig. 4. Axisymmetric spike geometry and surface mesh.



Table 1
All simulations cases for axisymmetric spike geometry. For each case, the final adapted mesh size is given.

Case Solver Scheme Hessian Hend # vertices Hend # tetrahedra

1 HLLC V4 L2-projection 5,107,296 30,315,882

2 Roe V4 L2-projection 4,295,057 25,464,860

3 HLLC V4 Green 4,306,398 25,539,731
4 HLLC V6 L2-projection 5,496,361 32,615,241

5 HLLC V6 Green 4,161,098 24,661,706

F. Alauzet, A. Loseille / Journal of Computational Physics 229 (2010) 561–593 573
The initial uniform mesh is composed of 243,446 vertices and 1,163,402 tetrahedra. As regards mesh adaptation, the
Mach number is chosen as sensitive variable and its interpolation error is controlled L2 norm. A total of 15 adaptation iter-
ations are performed. They are split into 3 steps of 5 adaptations with an increasing complexity:
Fig. 5.
values
½200;000;400;000;800;000�:
At each step, the couple mesh-solution is algorithmically converged at a fixed complexity. Considering an increasing dy-
namic complexity level has the advantage to accelerate the convergence of the whole process. In each case, we compared
the final solution obtained on the final adapted mesh of almost 5 million vertices and 30 million tetrahedra. To illustrate
the kind of mesh obtained, the final mesh obtained for the case 5 is shown in Figs. 5 and 6.

Results are analyzed by extracting the mid-field pressure signatures along lines at various distances under the geometry
from 5 to 20 body lengths. More precisely, we plot:
Dp ¼ R
l

� �3
4 p� p1

p1
function of Dx ¼ x

l
R
l

� ��1
4

;

Axisymmetric geometry. Final adapted mesh and local Mach number solution. Left, the solution iso-surfaces. Middle, adapted mesh and solution iso-
in a plane parallel to the flow. Right, view of the anisotropic adapted mesh.

Fig. 6. Axisymmetric geometry. A close view of the final adapted mesh and the solution of case 5.
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where R the distance to the body. More details on notations and the extraction procedure are given in Section 3.2. Signatures
are compared against NASA experimental wind-tunnel data given in Ref. [5]. For all the cases, the agreement with experi-
mental data is excellent. They are exemplified in Figs. 7–9. Notice that in [5], it is specified that the rounding of the measured
pressure peaks is believed to be due in part to wind-tunnel vibration and boundary layer effects. Therefore, sharp shock wave
peaks obtained in our simulations are the good answer. Lastly, always in [5], Whitham linear supersonic theory shown good
agreement for very simple geometry but discrepancies for the current geometry appear. Whereas the present pressure sig-
natures match the wind-tunnel data. This illustrates the benefits of the proposed approach which will be even more crucial
when dealing with complex aircraft geometries. The discussion on Whitham theory will be pursued in Section 3.2.

To compare the numerical results, two points conduct our analysis on the mid-field signatures:
Fig. 7. Axisymmetric geometry. Comparison between HLLC (top) and Roe (bottom) Riemann solvers. In both cases, the V4-scheme and a double
L2-projection for the Hessian reconstruction have been used.

Fig. 8. Axisymmetric geometry. Comparison between the double L2-projection (top) and the Green formula (bottom) for the Hessian reconstruction. In both
cases, the V4-scheme with the HLLC Riemann solver have been used.



Fig. 9. Axisymmetric geometry. Comparison between the double L2-projection (top) and the Green formula (bottom) for the Hessian reconstruction. In both
cases, the V6-scheme with the HLLC Riemann solver have been used.
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1. The sharpness and the intensity of the shock waves at R=l ¼ 20. In Section 3.2, we will see that the pressure decrease law
in the mid-field is proportional to ðR=lÞ

3
4 and the time length of the wave grows in ðR=lÞ

1
4. And asymptotically, the pressure

decrease law is in ðR=lÞ
1
2. Therefore, the shocks amplitude must preserved (or increased) through the propagation, else it

points out a numerical dissipation of the flow solve.
2. The last two shocks that are located between Dx ¼ 0:2 and Dx ¼ 0:4 at R=l ¼ 5 are still separated at R=l ¼ 10. This means

that the two last shocks focalize at a distance between R=l ¼ 10 and R=l ¼ 20. If the two shocks have focalized before
R=l ¼ 10, it is an artifact due to the numerical dissipation of the flow solver.

In all cases, the Dervieux limiter is specified and the 5-stage order-2 SSPRK scheme is used for the time integration.

2.3.1.1. Roe vs. HLLC. The comparison between the Roe and the HLLC Riemann solvers is presented in Fig. 7. For the analysis,
both schemes are coupled with the V4-scheme and the L2-projection Hessian recovery which correspond to cases 1 and 2. As
expected, Roe is more accurate than HLLC. The difference in accuracy between each case is highlighted on the last two shocks
that are not still merged at R=l ¼ 10 for Roe. Moreover, the numerical dissipation of the solver is identified by the loss of
intensity of the first shock peak which must remain constant. This phenomena is weaker with the Roe Riemann solver. How-
ever, for robustness purposes, we prefer the HLLC Riemann solver as on more complex geometries with complex boundary
conditions, such as real aircraft with engine presented in Section 4, the Roe Riemann solver can lead to negative pressures.

2.3.1.2. L2-projection vs. Green. The Hessian recovery methods are compared by using the HLLC Riemann solver and by con-
sidering either the V4-scheme (cases 1 and 3) shown in Fig. 8 or the V6-scheme (cases 4 and 5) presented in Fig. 9. The Green
reconstruction is clearly the best choice than the L2-projection for this application. Indeed, in cases 1 and 4 the separation
between the two last shocks disappeared at R=l ¼ 10 whereas this separation is still present in cases 3 and 5 with the Green
reconstruction in spite of the fact that adapted meshes with the Green reconstruction contain one million less vertices. This
difference in accuracy is essentially due to the smallest (minimal) stencil of the Green recovery procedure. It results that the
information to compute the metric is more compact (a three-vertices stencil) with the Green formulation than with the
L2-projection reconstruction (a five-vertices stencil). Therefore, larger second derivatives are computed in the direction nor-
mal to shock waves implying smallest sizes to be prescribed by the metric along shock waves.

2.3.1.3. V4-scheme vs. V6-scheme. The V6-scheme improves pressure signatures whatever the considered Riemann solver or
the considered Hessian construction. This impact is highlighted when comparing Figs. 8 and 9. Even if this scheme was ini-
tially designed to capture more accurately smooth solutions, such as vortices or instabilities, it also computes sharper shocks
and reduces the numerical dissipation when propagating shocks.

2.3.1.4. Conclusion. The combination HLLC Riemann solver, V6-scheme and Green formulation for the Hessian recovery pro-
vides very accurate results agreeing with the experimental data, cf. Fig. 9 right. The shock waves are not dissipated during
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the propagation and the shock sharpness is preserved. It demonstrates the ability of unstructured CFD flow solvers coupled
with mesh adaptation to provide accurate results in the mid-field, here R=l ¼ 20.

2.3.2. Lifting wing-body
The aim of this section is to validate the adaptive CFD model on a lifting configuration proposed by NASA and to point out

that the method can accurately predict full 3D configurations. A lifting wing-body produces a flow field disturbance which is
proportional to the degree of lift generated. The typical run time of the adaptive loop is also given.

Model 4 geometry of wind tunnel study [19] is selected. This configuration has also been studied in [39]. This lifting wing-
body geometry consists of an axisymmetric fuselage and a sweep delta wing. The body is a cylinder with a parabolic nose of
length 17.52 cm and diameter 1.08 cm. The fitness ratio ðl=dÞ is thus 16.22. The thickness r of the parabolic nose, of length
7.01, is defined by
r  
r ¼ 0:54� 0:011ðx� 7:01Þ2:
The wing is a 69� leading edge sweep delta wing and double-wedge 5-percent-thick diamond sections with the ridge line
located at mid-chord. The wings are mounted on the cylindrical portion of the fuselage at the longitudinal plane of symmetry
at x ¼ 8:21 cm. The dimensions of the wing tunnel sting are not provided in [19]. Based on this limited data, the sting is rep-
resented by a simple body of revolution extending 4 body-lengths behind the aircraft. The sting geometry is exactly the same
as the one in Ref. [39]. The geometry is immersed in a cylindrical domain aligned with the x-axis. The cylinder has a length of
2.75 m and a radius of 80 cm. This geometry is illustrated in Fig. 10.

The flow conditions are Mach 1.68 and a lift coefficient ðCLÞ of 0.08. The angle of attack was set to match the desired lift
using the reference area equal to 33:106 cm2.

Based on the previous analysis, for the flow solver, we have specified the HLLC Riemann solver, the V6-scheme with the
Dervieux limiter and for the temporal integration the 5-stage order-2 SSPRK scheme.

The multi-scales mesh adaptation considers a control of the interpolation error in L2 norm of the local Mach number. A
mesh gradation of 2 has been set with an increase law coefficient of 1.1 [1]. A total of 10 adaptations have been performed
split into 2 steps of 5 adaptations. At each step, the pair mesh-solution is algorithmically converged at a fixed complexity. We
have fixed a complexity of 15,000 for the first step and 30,000 for the second one. It results in a final adapted mesh the size of
which is almost 430,000 vertices.

The final mesh and its associated solution, the Cp iso-values, are shown in Fig. 11. The flow field is accurately computed in
the whole domain in the sense that the solution has not been diffused throughout its propagation in the mid-field. In par-
ticular, the shock waves have been propagated up to the domain boundaries. This result points out that the numerical dis-
sipation of the flow solver has been drastically reduced thanks to the anisotropic mesh refinement.

The accuracy of the obtained solution is deeper analyzed by a comparison to the experimental data of [19]. The mid-field
pressure signature is extracted at 3.6 body lengths, R=L ¼ 3:6, under the geometry at the end of each step of the adaptation
loop. More details on the extraction procedure are given in Section 3.2. The pressure signal plot, Fig. 12 middle-left, shows
very good agreement with the wind tunnel data. As in [39], we observe a discrepancy between the numerical solution and
the experiment for x 2 ½1; 1:1� probably due to the inaccurate representation of the body sting.

This accurate solution, in the whole domain, has been obtained on a relatively coarse mesh ‘‘only” composed of 430,000
vertices. This complexity reduction is achieved by the mesh anisotropy. The mesh anisotropy is quantified by the anisotropic
ratios and the anisotropic quotients, as explained in Section 2.2.3. The mean anisotropic ratio is 34 and the mean anisotropic
quotients is 722. The last quantity signifies that the anisotropy leads to a mesh complexity reduction of almost three order of
magnitudes as compared to an isotropic adapted mesh. Detailed histograms of the anisotropic ratio and quotient are given in
Table 2.
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Fig. 10. Left, model 4 lifting wing-body geometry of [19]. Right, lifting wing-body surface mesh.



Fig. 11. Lifting wing-body. Cp iso-values (top) and final adapted mesh (bottom) for three cut planes. Left, the symmetry plane y ¼ 0, middle, the plane z ¼ 0
and, right, the plane x ¼ 0:35.
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This simulation is run on a eight-processors 64-bits Mac Pro with an Intel Core 2 chipsets with a clock speed of 2.8 GHz
with 16 Gb of RAM. The CPU time for the whole computation is 2 h. The flow solver consumes 85% of the CPU time. Detailed
wall-clock time for each step of the adaptation loop are reported in Table 3. Note that 20 min of CPU times have to be added
to the flow solver to compute the initial state on the initial mesh.

2.3.2.1. Additional validation. The two additional lift conditions for Mach 1.68 presented in [19] are considered. Exactly the
same data are set for each simulation. The pressure signals predicted for CL ¼ 0 and CL ¼ 0:15 at each step of the adaptation
loop are shown in Fig. 12 left. In both cases, agreement with the wind tunnel data is very good. The CFD solutions are ob-
tained with relatively coarse meshes.

Finally, the three additional cases at higher Mach, M ¼ 2:7, for CL equal to 0, 0.08 and 0.15 of [19] are run. For these cases,
a simple cylindrical sting has been added to the geometry instead of the original one. The comparison to the wind tunnel
data is done by observing the pressure signal at R=L ¼ 3:1. Again, agreement with the experimental data is good, see
Fig. 12 right, except for the last shock corresponding to the region associated with the juncture between the body and
the sting. A more accurate representation of the sting would probably improved the results.

2.4. CFD validation without experimentation

When no experimental data are available, the computations can be validated by checking the convergence order of the
method. In our case, the second order predicted by the theory has to be asymptotically attained on a series of (almost)
embedded meshes. This will be done in Section 4 to validate the aircraft simulations. Another possible approach is to match
in the mid-field the CFD pressure signal with a signal propagated from the near-field.
3. Sonic boom modeling

Due to the complexity of the phenomenon, an accurate simulation of sonic boom signals at the ground requires to couple
non-linear CFD models and linear acoustic propagation equations. The near-field and mid-field flows are computed by solv-
ing the Euler equations with the adaptive techniques presented previously. The pressure distribution obtained under the air-
craft in the mid-field region is used to set up the initial conditions for the propagation of the acoustic waves to the ground.
This propagation is achieved with a one-dimensional simplified model resulting in the sonic boom signature. However, the



Fig. 12. Lifting wing-body. Left, pressure signals at R=L ¼ 3:6 for M ¼ 1:68. Right, pressure signals at R=L ¼ 3:1 for M ¼ 2:7. From top to bottom, lift
coefficient equal to 0, 0.08 and 0.15.
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coupling is valid only if specific conditions given by the linear supersonic aerodynamic theory are verified. These points are
discussed in the following.
3.1. Atmospheric pressure wave propagation

The propagation code uses a ray tracing algorithm based upon the waveform parameter method developed by Thomas
[37]. This algorithm propagates the mid-field perturbations to the ground in order to get the sonic boom signature. In this
approach, the pressure wave is characterized by three parameters (see Fig. 13):

� mi the slope of pressure waveform segment i
� Dpi the pressure rise across shock at the juncture of pressure waveform segment i and i� 1
� ki the time duration of pressure waveform segment i.



Fig. 13. Illustration of the three parameters mi;Dpi and ki characterizing the pressure wave.

Table 2
Anisotropic ratio (left) and quotient (right) histograms for the lifting wing-body final adapted mesh composed of 2,195,005 tetrahedra. For each interval, the
number of tetrahedra is given with the corresponding percentage.

Lifting wing-body (%)

Anisotropic ratio
1 < ratio 6 2 10,336 0.47
2 < ratio 6 3 53,258 2.43
3 < ratio 6 4 82,892 3.78
4 < ratio 6 5 93,021 4.24
5 < ratio 6 10 370,925 16.90
10 < ratio 6 50 1,098,248 50.03
50 < ratio 6 100 371,695 16.93
100 < ratio 6 1000 114,255 5.21

103 < ratio 6 104 375 0.02

Mean ratio 34
Mean quotient 722

Anisotropic quotient
1 < quo 6 2 2312 0.11
2 < quo 6 3 14,254 0.65
3 < quo 6 4 24,578 1.12
4 < quo 6 5 29,310 1.34
5 < quo 6 10 148,446 6.76
10 < quo 6 50 476,068 21.69
50 < quo 6 100 213,790 9.74
100 < quo 6 1000 938,658 42.76

103 < quo 6 104 337,882 15.39

104 < quo 6 105 9256 0.42

105 < quo 6 106 406 0.02

106 < quo 45 0.00

Table 3
CPU times for each step of the mesh adaptation loop for the lifting wing-body test case at M ¼ 1:68 and CL ¼ 0:08.

Step Solver Metric Mesh Interpolation Global

Total CPU time 1 h 40 m 33 s 1 m 04 s 16 m 31 s 37 s 1 h 58 m 45 s
Percentage (%) 84.68 0.90 13.90 0.52 100
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A system of three ordinary differential equations (ODEs), one for each parameter, is solved to propagate the pressure wave
in atmosphere:
dmi
dt ¼ C1 m2

i þ C2 mi;

dDpi
dt ¼ 1

2 C1Dpiðmi þmi�1Þ þ C2Dpi;

dki
dt ¼ � 1

2 C1ðDpi þ Dpiþ1Þ � C1miki;

8>><>>: ð10Þ
with notations:
C1 ¼
cþ 1

2c
c

pan
and C2 ¼

1
2

3
c

dc
dt
þ 1

q
dq
dt
� 2

an

dan

dt
� 1

A
dA
dt

� �
;
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where c;q and p are the air ambient sound speed, the density and the pressure, respectively. We have denoted by an the
speed at which a wave propagates along the acoustic ray cone and A the acoustic ray tube area as cut by the waveform
(i.e., the Mach cone), cf. Fig. 14. All these quantities are functions of the altitude. The speed at which a wave propagates along
the acoustic ray cone is given by an ¼ c þ v:n where v is the wind velocity and n the wavefront unit normal. If the wind
velocity is assumed to be zero then we have an ¼ c.

Acoustic rays are emitted by the aircraft and propagate orthogonally to the wavefronts. They represent the paths (i.e., the
geodesics) along which the acoustic disturbance propagates in atmosphere. They form the ray tube or ray cone, cf. Fig. 14. The
initial direction of a ray is given by the ray cone near the aircraft which is orthogonal to the Mach cone. To compute the ray
tube area, four rays are selected, separated by a time increment and an azimuthal increment. The initial directions of these
rays are governed by the aircraft flight parameters and the considered azimuth. With these initial conditions, ray paths can
be traced. Rays are traced by direct numerical integration of the eiconal. All four rays are traced in this way and the ray tube
area is computed by numerical differencing. Detailed formulae to compute wavefront unit normal and ray tube area are gi-
ven in [16]. In this study, we only analyze sonic boom signature for an angle of emission (or azimuthal angle) of acoustical
rays equal to zero.

Atmosphere has to be defined to evaluate these quantities, i.e., the temperature and the pressure evolution have to be
specified as a function of the altitude. Here, we consider the ICAO Standard atmosphere [20]. This atmosphere is accurately
represented by the following analytical functions:
Fig. 14
area.
TðzÞ ¼ maxðTgnd � 6:5z;216:65Þ;

pðzÞ ¼
pgnd 1� 6:50 z

Tgnd

� �5:26
if 0 km < z < 12:25 km;

pgnd 1� 3:04 z
Tgnd

� �12:26
if 12:25 km < z < 30 km;

8><>:

where Tgnd ¼ 288:15 K and pgnd = 101,300 Pa are the temperature in Kelvin and pressure in Pascal at the ground, respectively.
Moreover, we assume that the air is following the perfect gas rule. A complementary hypothesis is made by assuming that
there is no-wind between the flight altitude and the ground.

To solve this system, the three ordinary differential equations of System (10) are integrated in time by considering suf-
ficiently small time steps in order to be able to assume that variables C1 and C2 are constants. Moreover, the time steps must
be adequately truncated throughout the resolution. Indeed, as the wave propagates down the ray path, shocks will coalesce
to form a new one. When this occurs one or more of the ki will go to zero. When one of the ki does go to zero somewhere
between two points on the ray path, the associated segment is suppressed and the waveform parameters must be redefined.
The ground reflexion is taken into account by a reflexion coefficient equal to 1, thus implying pressure doubling at the
ground surface (altitude 0) because of the reflexion.
3.2. Coupling CFD and wave propagation

The acoustic propagation code uses the mid-field solution of the Euler code as initialization. More precisely, a pressure
distribution is extracted under the aircraft in the mid-field region to set up initial conditions for the propagation. The extrac-
tion is presented in the next paragraph. To ensure a valid coupling, the solution where the initial signal is extracted must
verify the Whitham linear supersonic aerodynamic theory. Those conditions are explained in the last paragraph.
Hyperbolic 
Ground 

Intercepts

Mach Cone 
(exists at time t)

Ray Cone 
( generated at time t)

RAYS

RAY TUBE

UPWARD CURVATURE

Z

X

. Left, definition of the ray cone which represents the paths along which the acoustic disturbance propagates. Right, definition of ray tube and its
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Let us first introduce the used nomenclature. We denote by:

� a the angle of attack of the aircraft
� M the Mach number
� p the acoustical pressure and p1 the atmospherical pressure
� b is the Mach cone angle with the flow direction defined by sin b ¼ 1

M
� L is the length of the aircraft
� R the distance of the observation point from the line parallel to the flow direction (or the ground) going through the nose

of the aircraft
� h is the azimuthal angle or the emission angle.

In practice, the distance from the aircraft is expressed with the ratio R=L.

3.2.1. Source signature extraction
Assuming that the aircraft is flying along the x-axis from positive to negative x, the extraction line at distance 0, or

R=L ¼ 0, is the line going through the nose of the aircraft with an angle of a in the symmetric plane Oxz. In other words, a
line parallel to the flow direction going through the nose of the aircraft. This line is defined by its two extrema:
x0 ¼ xjet � lfront cos a
y0 ¼ yjet

z0 ¼ zjet � lfront sin a

8><>: and
x1 ¼ xjet þ ðLþ lbackÞ cos a
y1 ¼ yjet

z1 ¼ zjet þ ðLþ lbackÞ sina

8><>:

where Pjet ¼ ðxjet; yjet; zjetÞ is the nose of the aircraft and, lfront and lback are the length of the line before the nose and after the
tail of the aircraft, respectively. The extraction line at a given distance R=L is obtained by translating it along the Mach cone:
xR=L
i ¼ xi þ R cosðb�aÞ

sin b

yR=L
i ¼ yi

zR=L
i ¼ zi � R sin ðb�aÞ

sin b

8>><>>: for i ¼ 0;1:
Finally, the extraction line at a given R=L and a given azimuthal angle h is defined by:
xR=L;h
i ¼ xi þ R cos h sinaþ R cos a

tan b

yR=L;h
i ¼ yi þ R sin h

zR=L;h
i ¼ zi � R cos h cos aþ R sin a

tan b

8>><>>: for i ¼ 0;1:
In all this study, we only consider extraction line at azimuthal angle 0.
The pressure variation along the extraction line is used as an initial input for the propagation code. In our implementa-

tion, this line corresponds to a uniform a posteriori discretization along the flight path. The pressure values on this discret-
ization are obtained by interpolating linearly the aerodynamic near-field pressure. To this end, each point of the line is
localized in the tetrahedral CFD mesh, i.e., we find the tetrahedron to which it belongs. In our approach, the segment discret-
ization is finer than the one used in the CFD computation. Practically, the initial input for the propagation code is the pres-
sure variation:
dp ¼ p� p1
p1

:

3.2.2. Validity of the coupling
The flow near the aircraft is three-dimensional and non-linear in nature whereas the propagation is a linear one-dimen-

sional model. The coupling between these two models becomes valid if the mid-field pressure signal can be used, as a F-func-
tion, to initialize the propagation. As stated in [30], there is a matching radius between the source function and the
propagation extrapolation. The assumption, that has not been rigorously verified, is that the use of the pressure signal be-
come valid when the flow field does not contain crossflow components anymore. In other words, the flow field is locally axi-
symmetric and it has no more non-linear effect. As crossflow components are very significant at small radii but are less at
larger distances, the pressure signal has to be extracted in the mid-field far enough from the aircraft to respect such a con-
dition. This is a necessary condition to take all the elements of the aircraft geometry (body, wings, . . .) into account in the
sonic boom signature.

This condition can be verified according to the linear supersonic aerodynamic theory. Experimentally (see for instance the
results of Section 2.3), the law variation of the pressure front dp decreases proportionally to R�

3
4 (equivalently ðR=LÞ�

3
4) while

the duration of the wave grows in R
1
4 (see also Section 2.3). The pressure decrease law tends toward R�1 near the mobile

where high non-linearities occur. And, this law tends toward R�
1
2 when the non-linear effect become negligible. To summa-

rize, the CFD flow field is considered converged and locally axisymmetric if the pressure variation tends to decrease propor-
tionally to ðR=LÞ�

1
2. Nevertheless, such a condition has to be verified carefully. Indeed, a non-linearity diffusing behavior may
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appear in the solution due to the numerical dissipation of the flow solver. In particular, if the CFD mesh is not refined enough,
shock waves will be diffused throughout their propagation and non-linearities will be removed.

As a consequence, multi-scales anisotropic mesh adaptation can remedy this issue as it controls globally the mesh sizes
and guarantees a coherent numerical dissipation in the whole computational domain. In order to certify the propagation, we
analyze the convergence of the sonic boom signature with respect to the extraction distance.
4. Studying the sonic boom of several SSBJs

In this section, we study and compare three supersonic business jet (SSBJ) geometries that have been provided by Das-
sault Aviation during the HISAC european project [17].

The first aircraft, cf. Fig. 17 top, is a low-drag-shaped jet. In the following, we will refer to as the low drag jet. This geom-
etry is the simplest one. In particular, the engines have not been integrated while it is known that they have a significant
impact on the sonic boom. The length of this jet is L ¼ 37 m and it has a wing span of 17 m. The surface mesh accuracy varies
between 1 mm and 30 cm.

The second aircraft is a low-boom-shaped jet. This geometry is more complex than the previous one. Notably, the en-
gine have been integrated. We notice that the engine have been integrated over the fuselage to minimize the impact of the
Table 4
Number of vertices and of tetrahedra for the final adapted meshes.

Geometry Hfinal # vertices Hfinal # tetrahedra

Low drag 9,465,835 56,568,966
Low boom 9,077,197 53,842,961
Low boom + dihedral 9,083,531 53,884,863
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Fig. 15. Global mesh convergence order for each SSBJ. From left to right, we obtain an order of 2 for the low drag jet, 1.5 for the low boom jet and 1.7 for the
low boom + dihedral jet.

Fig. 16. Left, the Mach cone emitted by the low boom + dihedral SSBJ. Right, the Mach cone emitted by the low drag SSBJ. The maximal Mach cone diameter
is 1.25 km.



Fig. 17. From top to bottom, the three studied configurations: the low drag jet, the low boom jet and the low boom + dihedral jet. Left, the surface meshes,
and right, the local Mach number iso-values.
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nacelles on the sonic boom. The aircraft length is L ¼ 42 m and it has a wing span of 20 m. The surface mesh accuracy
varies between 0.2 mm and 12 cm. This represents already a size variation of five orders of magnitude with respect to
the aircraft size, and this only for the surface mesh. Two versions of this jet are studied. The difference between them
is the wing. The first one has flat wing, it is represented in Fig. 17 (middle). We name it low boom jet. For the second
Fig. 18. From top to bottom, the low drag jet, the low boom jet and the low boom + dihedral jet. Left, view of the adapted volume mesh through the cut
plane along 0xz, and right, the associated local Mach number iso-values.
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shape, the wing has a double dihedral angle, Fig. 17 (bottom). The first dihedral angle is at the junction of the wing and
the fuselage. The second one is where the wing swept angle change. The wing differences are clearly visible in Fig. 21. This
second shape will be refer as the low boom + dihedral jet. With this geometry, wing dihedral angles effectiveness on the
sonic boom will be analyzed.

The computational domain is a cylinder of 2.25 km length and 1.5 km diameter. This represents a scale factor of 107 if the
size of the domain is compared to the maximal accuracy of the low boom jet surface mesh. This domain size enables pressure
signature in the mid-field to be obtained up to R=L ¼ 19 for the low drag jet and R=L ¼ 16 for both low boom models. The aim
here is to perform large R=L computations together with a convergence study to assess the numerical results.

This results section is outlined as follow. First, the parameters of the study are given. Then, the global orders of conver-
gence of each simulation are presented and the CFD results obtained for the near-field and mid-field are discussed. The
achieved mesh anisotropy is examined for each computation. In a fifth subsection, we analyze the convergence of the pres-
sure signals with respect to the ratio R=L and we specify the distance at which the coupling between CFD and propagation
becomes valid. The sonic boom signature convergence is also studied. Finally, the acoustic signals of each geometry are
compared.

In the results description, we do not provide the physical values obtained for the drag, the mid-field pressure signals and
the sonic booms for confidentiality reason. We will only provide relative values scaled on the results obtained for the low
drag jet.

4.1. Study parameters

The same simulation parameters are considered for the three SSBJ geometries. The flight conditions are a supersonic
cruise speed of Mach 1.6 at an altitude of 13,680 m (45,000 feet). In order to be able to compare the sonic boom associated
with each jet, it is fundamental to perform the computations at the same lift. Indeed, the sonic boom is a consequence of the
lift effect. In this study, the cruise lift has been set to Cl ¼ 0:115 by Dassault Aviation. The angle of attack for each aircraft is
then set such that this lift is attained. In each case, the angle of attack of the simulation is defined on the initial mesh which is
accurate close to the aircraft. These initial meshes are composed of almost 330,000 vertices for the low drag jet and 550,000
vertices for the low boom jets. The obtained angles of attack for each aircraft are near to 3 degrees.
Fig. 19. From top to bottom, the low drag jet, the low boom jet and the low boom + dihedral jet. Left, view of the adapted volume mesh through the cut
plane along 0xy, and right, the associated local Mach number iso-values.
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As regards the finite volume solver, we have specified the HLLC Riemann solver, the V6-scheme with the Dervieux limiter
and for the temporal integration the 5-stage order-2 SSPRK scheme. For the low boom jets, the engine data for the boundary
conditions have been specified by Dassault Aviation. The lift and drag coefficient are computed according to the reference
data of each geometry.

The multi-scales mesh adaptation considers a control of the interpolation error in L2 norm of the local Mach number. The
local Mach number has been selected as it is really representative of supersonic flows. We have deliberately chosen to do not
adapt the aircrafts surface meshes. Indeed, the provided surface meshes are very accurate and are of high quality for the
computations. A mesh gradation of 2.5 has been set [1]. A total of 32 adaptations have been performed. The mesh adaptation
loop is split into 4 steps of 8 adaptations. At each step, the pair mesh-solution is algorithmically converged at a fixed com-
plexity. This complexity is multiplied by two between two steps. This strategy has two main advantages. First, it enables us
to perform a convergence study of the whole solution as a series of pair mesh-solution with an increasing accuracy is ob-
tained. Second, considering an increasing dynamic complexity level accelerates the convergence of the whole process. We
have fixed the following complexities:
Fig. 20.
plane a
½100;000;200;000;400;000;800;000�;
which give meshes the size of which is almost 0.8,1.7,4 and 9 million of vertices. The sizes of the final meshes are summa-
rized in Table 4.

The simulations were run on a eight-processors 64-bits Mac Pro with an Intel Core 2 chipsets with a clock speed of 2.8
GHz with 16 Gb of RAM. The total CPU time for these simulations is approximately one week. These simulations seem to be
expensive as compared to Section 2.3.2, but the accuracy and the problem scale are different, and the convergence analysis
requires to fully converge the solution between each step of the adaptive loop.
4.2. Computations validation

To validate the CFD computations, the solution global convergence order for each geometry is analyzed with respect to a
reference solution. In each case, the reference solution is the final solution obtained on the finest adapted mesh for a com-
plexity equal to 800,000. The convergence is computed in L2 norm on the local Mach number which is the variable used for
From top to bottom, the low drag jet, the low boom jet and the low boom + dihedral jet. Left, view of the adapted volume mesh through the cut
long 0yz, and right, the associated local Mach number iso-values.
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the mesh adaptation. For the low drag, the low boom and the low boom + dihedral jets, we obtained convergence orders
equal to 2, 1.5 and 1.7, respectively. The convergence plots are given in Fig. 15.

For the simplest geometry, the low drag aircraft, the theoretical order has been attained. As regards the low boom geom-
etries, the obtained convergence order is less than two. Two hypothesizes are envisaged to explain these results. First, the
final solutions for the last three steps (i.e., at adaptations 16, 24 and 32) are not numerically fully converged in the adaptive
process. Indeed, these geometries are really more complex than the low drag one, notably engine boundary conditions are
employed. The second hypothesis is that there is a loss of convergence order due to the mesh gradation procedure. But, these
hypothesizes still have to be verified.
4.3. Near-field and mid-field results

For each computation, very accurate results in the whole computational domain are obtained for the final adapted
meshes containing almost 9 million vertices. In particular, the accuracy of the tetrahedral meshes has reached the surface
meshes accuracy and the refinements have been propagated in the whole computational domain. This is illustrated in
Fig. 16 where the Mach cones of the low boom + dihedral and the low drag SSBJs are depicted. These results point out that
the numerical dissipation of the flow solver has been drastically reduced thanks to the anisotropic mesh adaptation. The
Fig. 21. From top to bottom, the low drag jet, the low boom jet and the low boom + dihedral jet. Left, view of the adapted volume mesh through the cut
plane along 0xy, and right, the associated local Mach number iso-values.

Table 5
Mean and maximal anisotropic ratio and quotient for the three final adapted meshes reported in Table 4.

Low drag Low boom Low boom + dihedral

Mean ratio 402 371 372
Max ratio 62,664 32,903 152,981
Mean quotient 57,741 48,309 49,051
Max quotient 2,710,467,666 537,166,499 465,141,987
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shock waves have been accurately propagated in the whole computational domain, more than one kilometer below the
SSBJs.

The surface meshes and the associated solutions for each SSBJ are shown in Fig. 17. One can see the difference in the shock
position on the wing due to the wing dihedral angle for the low boom configurations. The Fig. 18 illustrates the local Mach
number iso-values and the final adapted mesh in the symmetry plane 0xz. We notice that the shock waves and the aniso-
tropic refinements have been propagated in the whole domain without any dissipation. We also remark the very accurate
capture inside the mesh of the shock waves at the inlet and the exhaust of the engines. This points out the multi-scales
behavior of the mesh adaptation approach. Cut planes of the volume meshes under the SSBJs are presented in Fig. 19. This
view shows that each element of the geometry emits its own shock waves. The focalization of shocks during their propaga-
tion is also illustrated inside the mesh. Figs. 20 and 21 are two views of the final mesh and the final solution for each con-
figuration in a cut plane behind the jet orthogonally to its path. They illustrate the mesh anisotropy along shocks and the
multi-scales effects with the capture of vortices in the wake. They also point out the great complexity of the physical phe-
nomenon and of the mesh refinement. This demonstrates the necessity to use a fully automatic mesh adaptive method.

4.4. About the meshes anisotropy

We present the amount of anisotropy obtained with the automatic mesh adaptation platform for the three simulations.
The anisotropy is quantified by the anisotropic ratios and the anisotropic quotients, as explained in Section 2.2.3. The
mean and the maximal values of these quantities for the three final adapted meshes are reported in Table 5. An average
anisotropic ratio of almost 400 is obtained for all cases while the maximal stretching can be of the order of 105. The mean
anisotropic quotient is a measure that evaluates the overall mesh complexity reduction achieved by the anisotropic
meshes as compared to an isotropic adapted one. The mean anisotropic quotient for each simulation is almost 50,000
which is colossal.

Detailed histograms of the anisotropic ratio and quotient for the low boom + dihedral final meshes are given in Table 6.
They show that the distribution of these quantities is a gaussian centered on the mean value and they confirm the highly
anisotropy reached with the proposed automatic adaptive approach.

4.5. Mid-field and sonic boom convergence

Figs. 22–24 display on the left the pressure signatures for the near-field ðR=L ¼ 1Þ and the mid-field (R=L from 5 to 19) for
each configuration and, on the right, the associated sonic boom signal, i.e., the boom issued from those pressure signatures. In
the following, we will designate by mid-field the pressure signature for R=L from 1 to 19. The mid-field signatures represent
Table 6
Anisotropic ratio (left) and quotient (right) histograms for the low boom + dihedral final adapted mesh composed of 53,884,863 tetrahedra. For each interval,
the number of tetrahedra is given with the corresponding percentage.

Low boom + dihedral (%)

Anisotropic ratio
1 < ratio 6 2 38,740 0.07
2 < ratio 6 3 175,929 0.33
3 < ratio 6 4 274,955 0.51
4 < ratio 6 5 328,501 0.61
5 < ratio 6 10 1,554,625 2.89
10 < ratio 6 50 6,620,533 12.29
50 < ratio 6 100 5,983,308 11.10
100 < ratio 6 1000 34,830,344 64.64

103 < ratio 6 104 4,077,796 7.57

104 < ratio 6 105 131 0.00

105 < ratio 1 0.00

Anisotropic quotient
1 < quo 6 2 10,042 0.02
2 < quo 6 3 50,171 0.09
3 < quo 6 4 81,027 0.15
4 < quo 6 5 100,385 0.19
5 < quo 6 10 526,474 0.98
10 < quo 6 50 1,989,374 3.69
50 < quo 6 100 1,204,384 2.24
100 < quo 6 1000 7,408,172 13.75

103 < quo 6 104 14,595,766 27.09

104 < quo 6 105 20,999,034 38.97

105 < quo 6 106 6,790,336 12.60

106 < quo 129,698 0.24
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of the pressure become of the order of
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p
. They also illustrate the convergence of the associated sonic boom with respect

to R=L. These plots provide an estimation of the required matching radius for each geometry, in other words, the distance
from which the crossflow (non-linear) effects become negligible. For all cases, we do not obtain a boom shape which is a
N-wave, but a signal at the ground with three shocks. There is always two shock in the front. The first one is due to the nose
of the SSBJ and the second to the wings. The large discrepancy of the pressure signal shape in the mid-field (from R=L ¼ 1 to
19 for the low drag jet and from R=L ¼ 1 to 16 for the low boom jets) implies a large disparity of the ground sonic boom with
respect to the extraction distance. We observe a convergence of the pressure signals and of the booms from R=L ¼ 6 for the
low drag jet and from R=L ¼ 11 for the low boom jets. Indeed, the low boom configurations are more complicated and are
generating more non-linearities.

The convergence during the mesh adaptation process of the pressure signals at R=L ¼ 15 and of the sonic booms propa-
gated from R=L ¼ 15 is illustrated in the bottom plots of Figs. 22–24. The signals for each final solution at a fixed complexity,
i.e., at iterations 8, 16, 24 and 32 of the adaptive loop, are compared. We denote by adaptation 1, 2, 3 and 4 the meshes con-
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taining almost 0.8, 1.7, 4 and 9 million vertices. For the low drag jet, an accurate computation of the boom is nearly attained
at adaptation 1 even if the pressure signature in the mid-field is clearly less accurate as compared to the pressure signature
at adaptation 4. This smoothing of the shock waves has a small influence on the boom prediction. For the low boom config-
urations, the accuracy of the mesh at adaptation 2 is required to obtain a good representation of the solution at R=L ¼ 15.
Else, the first shock of the ground signal is not correctly computed. Notice that at adaptation 2, the region between the first
two shocks is not accurately captured.

These observations signify that some scales of the solution, in fact the small details of amplitude, do not influence the
sonic boom signature obtained with the Thomas propagation method. However, attention has to be paid with respect to
the solution dissipation. If the solution is too dissipated then we will obtained a poor extracted signature. It is thus interest-
ing to note that the dissipation of the numerical scheme obtained on anisotropic adapted meshes seems to have some con-
sistencies during the whole adaptive process by preserving the signal properties.

In conclusion, these simulations have pointed out that it is critical to have a sufficient accurate pressure signal far enough
from the SSBJ to obtain a valid coupling between CFD and the propagation code when the Thomas propagation method is
used. The matching radius increases with the complexity of the geometry to take into account the crossflow effects. On
the other hand, it is not essential to be ‘‘very” accurate at the extraction if the dissipation of the signal through its propaga-
tion in the mid-field is consistent. Nonetheless, a high accuracy can be required in certain regions of the mid-field to obtain
an adequate signal at the extraction.
Fig. 23. Mid-field pressure signatures (left) and sonic boom signals (right) of the low boom jet. Left, the plots represent
ffiffiffiffiffiffiffiffi
R=L

p
dp function of the positionx.

Right, the plots represent the pressure function of the position the time.



Fig. 244 Mid-field pressure signatures (left) and sonic boom signals (right) of the low boom + dihedral jet. Left, the plots represent

ffiffiffiffiffiffiffiffi

R=L

p

dp function of the
position x. Right, the plots represent the pressure function of the position the time4

Table 7
Relative intensity of the shock waves in the sonic boom signatures for all configurations. The relative drag of each SSBJ is also mentioned4

Configuration First shock Second shock Third shock Drag
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4.6. Comparison of the different geometries

In this section, we compare the three SSBJ configurations by analyzing:

� the drag
� the mid-field pressure signal at 700 m under the SSBJ, i.e., R=L ¼ 18 for the low drag jet and R=L ¼ 15:86 for the low boom

jets
� and the sonic boom computed from this extraction.
Low drag 1 0486 1446 1

Low boom 0464 0499 1462 1464

Low boom + dihedral 0464 1418 1456 1467



Fig. 25. Comparison of the pressure signals and the sonic booms of the low drag and the low boom + dihedral jets.

Fig. 26. Comparison of the pressure signals and the sonic booms of the low boom + dihedral and the low boom jets.
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To handle these comparisons, the values of interest (the drag and the intensity of the three shocks of the boom) are given
relatively to the low drag configuration. We set a drag of 1 for the low drag jet and all sonic boom shock amplitude are com-
pared relatively to the first shock of the boom of the low drag jet which is set to an amplitude of 1. The relative results are
summarize in Table 7.

We first compare the low drag and the low boom configurations, Fig. 25. Then, we analyze the effect of a wing dihedral
angle on the sonic boom, Fig. 26.
4.6.1. Low drag vs. low boom + dihedral
The mid-field analysis at 700 m under the SSBJs shows that the low boom shapes reduce significantly the shock due to the

nose. On the other hand, the wings shock and the tail shock are slightly higher than those of the low drag jet. These mid-field
differences results in a reduction of 36% of the first shock intensity and an increase of 37% and 11% of the amplitude of the
second and the third shock for the sonic boom signature. It is surprising to get an increase of 37% of the second shock inten-
sity whereas the mid-field region associated with the wings is quite similar. As regards the shock amplitude increases for the
last two shocks, it is important to recall that the low drag jet has no engines that have a notable impact on the sonic boom.

It is interesting to remark the existence of a sinusoidal region between the first and the second shock in the low boom jets
sonic boom signatures. It is unusual to see such smooth regions in booms. The current analysis cannot quantify its real im-
pact on the sonic boom. Does it increase the rise time of the second shock knowing that the rise time influence our percep-
tion of the sonic boom?
4.6.2. Wing dihedral effect
The dihedral angle of the wings intrinsically modifies the wings shocks in the mid-field. With this geometry modification,

some of lift effects are sent laterally. In the pressure signature at 700 m, cf. Fig. 26, a double shock is obtained with the dihe-
dral instead of a ‘‘three-pick” shock. The impact on the sonic boom is to shift the second shock on the right, i.e., it arrives later,
and to slightly reduce the amplitude of the last shock: 1.62 instead of 1.65. This is due to the effective length of the low
boom + dihedral jet that has been slightly increase thanks to the dihedral. As regards the second shock, the maximal pressure
has been a little reduced with the dihedral effect. However, because of the smooth sinusoidal region before the second shock,
the relative amplitude is higher with the dihedral effect, 1.18 instead of 0.99, as the foot of the shock is at a lower pressure.
To sum up, the dihedral effect is positive but it has a slight influence on softening the sonic boom.



592 F. Alauzet, A. Loseille / Journal of Computational Physics 229 (2010) 561–593
In compensation, the reduction of the first shock of the boom leads to a large augmentation of the drag. A drag of 1.64 and
1.67 are obtained for the low boom and the low boom + dihedral configurations, respectively. This represents an increase of
more than 60% illustrating the significant negative impact of a sonic boom optimization on the drag. Nevertheless, the drag
of the low drag SSBJ is underestimated as the geometry is not supplied with engines.
5. Concluding remarks

A high-fidelity sonic boom modeling, coupling adaptive CFD mid-field simulation and ray tracing algorithm for the far-
field, has been presented. A crucial point was the use of an adequate anisotropic mesh adaptation approach in order to have
a valid coupling by propagating the mid-field signal far enough from the aircraft and to be able to certify the computation by
attaining the theoretical mesh convergence order of the solution.

This technology illustrates that CFD on unstructured meshes is no more limited to R=L ¼ 1 and that it is now possible to
perform accurate simulations up to R=L ¼ 20 and even more.

This approach has been validated on two test cases by comparison to experimental data and has been applied successfully
to three realistic aircraft configurations. The method was able to propagate anisotropic mesh refinement in whole compu-
tational domain without any difficulties to preserve the solution accuracy. It has been demonstrated numerically that, in this
case, a mid-field extraction more than R=L ¼ 10 (depending on the aircraft geometry complexity) are required to obtain a
precise sonic boom signature. Moreover, it has been pointed out that a consistent numerical dissipation is obtained with
the flow solver on highly anisotropic adapted meshes. It results that even with smaller mesh size the sonic boom signal prop-
erties are preserved. This authorizes accurate sonic boom prediction with meshes composed of ‘‘only” 2 million vertices. This
method can fast, i.e., a couple of hours on a PC, provide accurate solution at moderate R=L which is of main interest for opti-
mization platform. On the other hand, it can also be used to perform convergence studies and to assess CFD computations at
large R=L with longer runs.

The proposed method can be even more improved in terms of CPU efficiency.
This adaptive procedure can be integrated in a three-stage modeling using the multi-pole reconstruction. Indeed, the

multi-pole approach reduces the matching distance by taking into account crossflow effects. The adaptive CFD is then able
to provide an even more accurate and certified mid-field signal (at a reduced matching distance) all around the aircraft.
Moreover, this approach give another possible way to certify that there is no more non-linearities and to ensure that the
coupling is valid. With this coupling, we can envisage to match mid-field CFD signals with the mid-field signals resulting
from the propagation of near-field entries.

As regards the mesh adaptive technique, as the error estimate is geometric, the multi-scales mesh adaptation adapts the
mesh in the whole computational domain and the mesh accuracy is related to the phenomena intensity. We can expect large
improvement by considering a goal oriented approach which is under study [24]. In this case, only regions of interest for the
functional will be refined and the mesh accuracy will be related to the functional accuracy thanks to the adjoint state. We
thus expect enhancement in terms of accuracy and mesh size reduction.
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